Repeat Buyers Prediction: a Feature Engineering Approach

Presented by Jianxun Lian

University of Science and Technology of China

Introduction

- To predict which shoppers would become repeat buyers after sales promotion in Tmall.com
- User behavior logs

• Problem

User | Merchant | Repeat purchase?

Binary classification problem

• The simplest (and perhaps most efficient) way to model the problem

- The features come from 3 pillars:
 - User level
 - Merchant level
 - User-merchant level
- Labels
 - 1: repeat buyer
 - 0: not repeat buyer

The framework(mainly for stage 1)

Feature engineering

- User pillar
 - Overall statistics
 - Some general aggregation value of the user's past shopping
 - E.g., total number of purchase, total number of categories
 - Lifespan
 - Buy-to-Click ratio
 - The total number of purchases divided by total number of clicks
 - Further refined into category, brand, merchant and item level
 - Temporal behavior

 - How users' behavior change with date E.g. $lift_{festival} = \frac{number\ of\ double\ 11\ purchase}{number\ of\ purchase\ from\ the\ other\ days}$,
 - E.g. the last week, the last 3 months
 - Repeat behavior
 - Historical repeat purchase (before Double 11 day)
 - Assumption: users' behavior would be consistent over the time
 - E.g. $RBR_{item} = \frac{number\ of\ repeat\ purchased\ items}{number\ of\ total\ purchased\ items}$
 - Behavior Entropy
 - BE describes the amount of variation within a user's activity
 - $BE = -\sum_{i=1}^{n} p(x_i) \log p(x_i)$, $p(x_i) = \frac{number\ of\ actions\ on\ x_i}{number\ of\ total\ actions}$
 - Demography

Feature engineering

- Merchant pillar
 - Overall statistics
 - Lifespan
 - Buy-to-Click ratio
 - Temporal behavior
 - Repeat behavior
 - Promotion Frequency
 - How often the merchant would have sales campaigns
 - Count the spikes in the sales curve
 - Prior repeat user(category, brand) ratio
 - The merchant id set of the training and test are identical
 - Calculate each merchant's repeat user ratio based on training data
 - Fight with overfitting
 - AUC is poor if used this feature directly
 - Simulate the random splitting process: improve a little
 - Cut the low frequency merchants, and set their value to -1 for generalization

Feature engineering

- User-Merchant pillar
 - Overall statistics
 - Lifespan
 - Buy-to-Click ratio
 - Temporal behavior
 - Remaining items
 - Some items(categories/brands) has been clicked, but not purchased yet
 - Merchant attraction
 - The current merchant's relative rank among all the user's historical merchants
 - How many categories/brand are in the intersection of user's favorite ones with merchants' top sellers

Model selection and combination

- We tried 6 kinds of classifiers
 - All were done by Microsoft's internal ML tool TLC

Classifier	AUC
GBDT	0.6956
LR	0.6839
SVM	0.620
Random Forest	0.678
Neural Network	0.6819
Averaged Perceptron	0.6716

- Grid search the parameters
- Finally choose to linearly combine GBDT, LR, and NN with weights 0.82, 0.09,
 0.09

Feature importance

• Top 10 most important features from GBDT

Feature combination

- Train models based on different feature subset and then combine the results together could improve the performance
 - Learn from last year's TianChi competition
 - Combine features from 3 pillars:
 - Totally $2^3 1 = 7$ kinds of sub-features
 - With or without Prior Repeat Ratio
 - 3 feature sets:
 - without prior repeat ratio
 - with prior user repeat ratio
 - with prior user repeat ratio and prior category/brand repeat ratio
 - Improve the AUC significantly

Results

• Stage 1: AUC 0.701789, rank 15th

Figure 3: AUC improvement history in stage 1

• Stage 2: AUC: 0.711287

Figure 4: AUC improvement with the number of trees in GBDT

Depth of tree	
Number of tree	1800
Learning rate	0.025
Min Leaf Number	32

Table 2: GBDT parameters at stage 2

Conclusions

- Binary classifications
- Extract features from user, merchant, user-merchant pillars
- Training models on sub-features
- Linear combination of different classifiers

Thanks